Adaptively Restrained Molecular Dynamics in LAMMPS

By Semeho EDORH

Svetlana ARTEMOVA, Semeho EDORH, Dmitriy MARIN, Krishna SINGH, Zofia TRSTANOVA and Stephane REDON

CECAM-RA LAMMPS 26/06/2018

Classical MD simulations

- Generate a temporal evolution (Positions and momenta) of a particle system
- Retrieve macroscopic information by averaging properties along trajectories
- Expensive task due to force computations, especially for pairwise non-bonded forces
- Most interaction forces are computed from the scratch at each timestep.

Adaptively Restrained MD simulations

- ARMD freezes at each timestep some particles
- Although the phase space is explored differently, several properties are preserved
- Computationally less expensive when interaction forces depend upon interatomic distances
- Interaction forces can be incrementally updated at each timestep.

ARMD: How it works?

- ARMD switches on/off particles positional degrees of freedom based on kinetic energy
- A particle is restrained when its instantaneous kinetic energy is below ε_r
- Particles may gain or lose kinetic energy
- And become active when their kinetic energy exceeds ε_r
- Like MD, ARMD can be expressed with Hamiltonian formalism... but with a modified Hamiltonian.

ARMD: The Hamiltonian

- MD Hamiltonian sums kinetic energy and interaction potential
- In ARMD, the kinetic term is slightly modified
- The diagonal element \u03c6_i(\u03c6_i, \u03c6_i) controls the state of a particle i

$$\phi_i(\boldsymbol{q}_i, \boldsymbol{p}_i) = \frac{1}{m_i} \left(1 - \rho_i \left(\frac{p_i^2}{2m_i} \right) \right)$$

> In order to allow smooth transitions and stable simulations, we introduce a second threshold ε_f

 $H(\boldsymbol{q},\boldsymbol{p}) = \frac{1}{2}\boldsymbol{p}^T M^{-1}\boldsymbol{p} + V(\boldsymbol{q})$

$$H_{AR}(\boldsymbol{q},\boldsymbol{p}) = \frac{1}{2}\boldsymbol{p}^T\boldsymbol{\phi}(\boldsymbol{q},\boldsymbol{p})\boldsymbol{p} + V(\boldsymbol{q})$$

ARMD: Some properties

- ARMD can sample both NVE and NVT ensembles
- Ensemble averages are preserved for position-dependent properties

$$\langle A \rangle_{H_{AR}} = \langle A \rangle_{H}$$

$$\frac{\mathrm{d}\boldsymbol{q}}{\mathrm{d}t} = \nabla_{\boldsymbol{p}} H_{AR}$$
$$\frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t} = -\nabla V - \gamma \nabla_{\boldsymbol{p}} H_{AR} + \sigma \frac{\mathrm{d}\boldsymbol{W}}{\mathrm{d}t}$$
[Trstanova 2016]

> The number of active particles is governed by the choice of $(\varepsilon_r, \varepsilon_f)$ 1200

ARMD in LAMMPS

- □ NVE ensemble: **Fix_ARMD_NVE.cpp**
- NVT Langevin: Fix_ARMD_Langevin.cpp
- □ Integrator: **ARMD.cpp**
- □ Incremental algorithms for non-bonded pairwise interactions
 - ✓ General treatment for short-range interactions
 - ✓ Specialized algorithms for electrostatics
- □ ARMD in KOKKOS package

Short-range potentials

□ Several pair_***.cpp in LAMMPS

- Van der Walls potentials (Lennard Jones, Buckingham, etc.)
- Can be truncated beyond a certain cutoff
- Efficiently computed with Neighbor Lists

 $V_{short} = \sum_{i=1}^{N} \sum_{\substack{j=1\\j>i}}^{N} V_s(r_{ij})$

Incremental Algorithms for short-range interactions

[Edorh 2018]

- Restrained Interactions between restrainedrestrained particles
- Active Interactions which involve at least one active particle (active-restrained, active-active)
- □ Force decomposition:

$$F_i = F_i^{\text{active}} + F_i^{\text{restrained}}$$

[Singh 2017]

Active Neighbor lists

- Active particles: $F_i = F_i^{\text{active}} + 0$
- \Box Restrained particles: $F_i = F_i^{\text{active}} + F_i^{\text{restrained}}$
- \Box **F**^{restrained} can be stored

 \Box F_i^{active} can be efficiently evaluated with specialized Neighbor lists:

Active Neighbor lists (ANL)

- Derived from built-in Full Neighbor lists
- Newton's 3rd Law can be enabled by ANL
- ANL +ARMD can be used without modifying any pair _***.cpp

Switched particles can be treated with few operations.

[Singh 2017]

Benchmark: NVT simulation of LJ particles

Benchmark: NVT simulation of LJ particles + MPI

- □ MPI enabled
- B64K particles
- □ 8/16 CPUs Intel Xeon E5540 per node
- Gigabit Ethernet network

Innía

Breakdown of wall-clock time for 1 and 4 nodes with 4 processes per each node normalized by LAMMPS timing for different percentage of restrained particles Other – Load balancing, ARMD routines for switched particles (ANL and force computations of switched particles), position & momenta update; comm – communications; neig – neighbor list construction; force – force computation

L.

20 50 70 80 90

1 node, 4 proc.

ARMD and KOKKOS

- □ FCC lattice of density 0.8442
- Truncated Lennard-Jones potential
- **D** Cutoff distance $r_c = 2.5\sigma$
- Neighbor list updated each 20 timesteps

- □ **Nano-projectile**: Cu₁₀₀₀ (*r* = 1.415 nm)
- Substrate: Cu, 677K atoms (L = 25 nm; H = 12.5 nm)
- Nano-projectile velocity: 5 km/sec (8.25 eV per atom, total: 8.25 keV)
- Truncated Lennard-Jones potential
- Neighbor list update each 20 timesteps

(nría_

CECAM-RA LAMMPS 26/06/2018

[Marin 2018]

Parameters $\varepsilon_r \ \varepsilon_f$ are in eV. Nano-projectile: 8.25 eV per atom *Slice: 1 nm*

t = 4 ps

t = 10 ps

t = 15 ps

Snapshots at t=1ps of crater formation in the substrate. Color depicts particle displacement compared to their initial state. **a** is the lattice constant. $(\epsilon_{...}, \epsilon_{...})$ are in eV.

The cluster volume as a number of missing atoms in the substrate.

✓ The relative error of the calculated crater volume for ARMD compared to classical MD is less than 12% for parameters (ϵ_r, ϵ_f) = (0.1, 0.3), (1, 3), (10, 30), (100, 300) eV

[Marin 2018]

Incremental algorithms for Electrostatics

- Long-range interactions (Electrostatics) are extremely expensive
- Electrostatics are efficiently handled by splitting short- and long- range contributions:
 Pair.cpp + kspace.cpp
- They can also benefit from adaptive restraints
- Short-range terms are enhanced by ANLs
- Long-range terms require more specific algorithms

□ Improved algorithms

- ✓ Ewald summation
- ✓ P3M
- Meshed continuum method

- □ Coulomb point charges are smeared with Gaussians
- □ Forces are split into Real- and Fourier- spaces contributions:

$$\boldsymbol{f}_{i}^{short} + \boldsymbol{f}_{i}^{long}$$

$$\square \text{ Real space}: \mathbf{f}_{i}^{short} = \frac{1}{4\pi\epsilon_{0}} \sum_{j \in \mathcal{N}(i)} q_{i}q_{j} \frac{\mathbf{x}_{ij}}{|\mathbf{x}_{ij}|^{2}} \left[\frac{2}{\sigma\sqrt{2\pi}} \exp\left(\frac{|\mathbf{x}_{ij}|^{2}}{2\sigma^{2}}\right) - \operatorname{erfc}\left(\frac{|\mathbf{x}_{ij}|}{\sigma\sqrt{2}}\right) \right]$$
$$\square \text{ K-space}: \mathbf{f}_{i}^{long} = \frac{1}{2V\epsilon_{0}} \sum_{\mathbf{k}\neq 0} \frac{\exp(-\sigma^{2}k^{2}/2)}{k^{2}} \left(\overline{S(\mathbf{k})} \frac{\partial S(\mathbf{k})}{\partial \mathbf{x}_{i}} + S(\mathbf{k}) \frac{\partial \overline{S(\mathbf{k})}}{\partial \mathbf{x}_{i}} \right)$$
$$= \frac{q_{i}}{V\epsilon_{0}} \sum_{\mathbf{k}\neq 0} \frac{e^{-\sigma^{2}k^{2}/2}}{k^{2}} \mathbf{k} (\sin(\mathbf{k}.\mathbf{x}_{i}) \operatorname{Re}(S(\mathbf{k})) - \cos(\mathbf{k}.\mathbf{x}_{i}) \operatorname{Im}(S(\mathbf{k})))$$
$$\checkmark$$
$$\checkmark$$
Structure factor: $S(\mathbf{k}) \equiv \sum_{j=1}^{N} q_{j} e^{i\mathbf{k}.\mathbf{x}_{j}}$

 $\bullet \sigma$ and k affect accuracy/speed!

Incremental Ewald summation

Real space : handled with ANLs

 \Box Evaluation of the structure factor : S(A)

$$(\mathbf{k}) = S^{(a)}(\mathbf{k}) + S^{(r)}(\mathbf{k})$$
$$= \sum_{active} q_j e^{i\mathbf{k}\cdot\mathbf{x}_j} + \sum_{restrained} q_j e^{i\mathbf{k}\cdot\mathbf{x}_j}$$

 \Box Sin and Cos Terms can be saved when particle *i* is restrained

$$\begin{aligned} \boldsymbol{f}_{i}^{long} &= \frac{1}{2V\epsilon_{0}} \sum_{\boldsymbol{k}\neq 0} \frac{\exp(-\sigma^{2}k^{2}/2)}{k^{2}} \left(\overline{S(\boldsymbol{k})} \frac{\partial S(\boldsymbol{k})}{\partial \boldsymbol{x}_{i}} + S(\boldsymbol{k}) \frac{\partial \overline{S(\boldsymbol{k})}}{\partial \boldsymbol{x}_{i}} \right) \\ &= \frac{q_{i}}{V\epsilon_{0}} \sum_{\boldsymbol{k}\neq 0} \frac{e^{-\sigma^{2}k^{2}/2}}{k^{2}} \boldsymbol{k} \left(\sin(\boldsymbol{k}.\boldsymbol{x}_{i}) \operatorname{Re}(S(\boldsymbol{k})) - \cos(\boldsymbol{k}.\boldsymbol{x}_{i}) \operatorname{Im}(S(\boldsymbol{k})) \right) \end{aligned}$$

Incremental Ewald summation

□ SPC/E Water : 36000 particles

D Box : 70X70X70 A^3

CPU time per timestep for various percentage of restrained particles. Several real space cutoff were employed in order to find the best configuration. *r*_e is in angstrom.

Speedup as function of the proportion of restrained particles.

Good acceleration but still slower than P3M

CECAM-RA LAMMPS 26/06/2018

Particle Particle Particle Mesh (P3M)

- Ewald summation... but long-range terms are treated on a grid
- □ Charges are sampled on a mesh

$$\rho_g(\boldsymbol{x}_p) = \frac{1}{h^3} \sum_{i=1}^N q_i W(\boldsymbol{x}_p - \boldsymbol{x}_i)$$

Electric field/Coulomb potential is retrieved with Fast Fourier Transforms

$$\mathscr{E}(\boldsymbol{x}_p) = \overleftarrow{\mathrm{FFT}} \left[i \boldsymbol{k} \overrightarrow{\mathrm{FFT}} [\rho_g] \times \widetilde{G}_{opt} \right] (\boldsymbol{x}_p)$$

□ Forces are interpolated from the electric field

$$\boldsymbol{f}_i^{long} \simeq \boldsymbol{q}_i \sum_{\boldsymbol{x}_p \in \Omega_h} \mathscr{E}(\boldsymbol{x}_p) W(\boldsymbol{x}_p - \boldsymbol{x}_i)$$

Grid size and sigma controls accuracy/speed!

Incremental Particle Particle Particle Mesh (IP3M)

Grid sizes can be linked to the accuracy of computations

 $M_2 \simeq M \left[\frac{1}{\gamma} \sqrt{\frac{N_a}{N}} \right]^{\overline{P}}$ $(\Delta f) \simeq (\Delta f_{1+2}) \Longrightarrow \gamma = \frac{\sqrt{2}}{2}$

Electric field is evaluated at atomic positions
 Problem 1 can be solved once.

Valid only when particles can't switch state

Incremental Particle Particle Particle Mesh (IP3M)

] [30>	<: 70 * 70 * 70 Å ³
] F	Rel	ative accuracy: 10^{-5}
	0.01	<u> </u>
	0.008	Errors in <i>x</i> -direction
		Incremental P3M
	0.006	
	0.004	n frain in the same the first of the start in the many start frain and the start in the same start in the start
$-f_{exact}$	0.002	a de la comparte de la comparte de la comparte de la desta de la comparte de la comparte de la comparte de la c
	0	
f_i -	-0.002	and the second
	-0.004	a da barang san da barang san san san san san san sa barang sa barang san
	-0.006	
	-0.008	
	-0.01	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$

□ SPC/E Water : 36000 particles

Error in forces (x-direction) of incremental Particle Particle Particle Mesh

α_a	M	M_1	M_2	Δf	Δf_{1+2}	S_{long}			
$\epsilon \simeq 10^{-4} ~{\rm and}~ \Delta f^{target} = 3.8 \times 10^{-2}$									
1%	36	40	30	2.50×10^{-2}	1.90×10^{-2}	×1.9			
5%	36	40	30	2.50×10^{-2}	2.32×10^{-2}	×1.8			
10%	36	40	32	2.50×10^{-2}	2.92×10^{-2}	×1.7			
20%	36	40	36	2.50×10^{-2}	2.05×10^{-2}	×1.1			
40%	36	40	36	2.50×10^{-2}	2.19×10^{-2}	×1.0			
$\epsilon \simeq 10^{-5} ~{\rm and}~ \Delta f^{target} = 3.9 \times 10^{-3}$									
1%	60	64	45	2.85×10^{-3}	3.01×10^{-3}	×2.2			
5%	60	64	50	2.85×10^{-3}	2.82×10^{-3}	×1.8			
10%	60	64	54	2.85×10^{-3}	2.79×10^{-3}	×1.34			
20%	60	64	60	2.85×10^{-3}	2.46×10^{-3}	×1.01			
40%	60	64	60	2.85×10^{-3}	2.70×10^{-3}	×1.0			
$\epsilon \simeq 10^{-6}$ and $\Delta f^{target} = 3.4 \times 10^{-4}$									
1%	100	108	72	2.96×10^{-4}	2.86×10^{-4}	×3.1			
5%	100	108	80	2.96×10^{-4}	2.87×10^{-4}	×2.2			
10%	100	108	81	2.96×10^{-4}	2.85×10^{-4}	×1.9			
20%	100	108	90	2.96×10^{-4}	2.89×10^{-4}	×1.5			
40%	100	108	90	2.96×10^{-4}	2.95×10^{-4}	×1.4			
$\epsilon \simeq 10^{-7}$ and $\Delta f^{target} = 3.8 \times 10^{-5}$									
1%	180	180	120	2.37×10^{-5}	2.83×10^{-5}	×3.1			
5%	180	180	135	2.37×10^{-5}	2.99×10^{-5}	×2.5			
10%	180	180	144	2.37×10^{-5}	3.02×10^{-5}	×2.3			
20%	180	180	150	2.37×10^{-5}	3.00×10^{-5}	×1.8			
40%	180	180	160	2.37×10^{-5}	2.95×10^{-5}	×15			

✓ We can also handle switching particles

Incremental Particle Particle Particle Mesh (IP3M)

Problem 1 is solved every **k** steps

- Problem 2 is slightly modified and account for the fact that some restrained particles have been displaced (by being active at least once)
- When the rate of switches is constant, we can estimate the number of particles that have been active and the suitable grid sizes
- k and M₂ can be tuned to give the best performance
- Speedup is less important

Evolution of the RMS force error of IP3M. 90% of particles are restrained 1% of particles switch at each timestep. Speedup of long- (resp. short-) range calculations **1.35** (resp. **3.9**).

Meshed Continuum Method (MCM)

- Point charges are replaced by smooth densities which have a compact support
- □ The induced potential is the solution of a Poisson equation solved with a **multigrid** solver: $\Delta \Phi = \rho^{sm}$
- Coulomb quantities are interpolated from a gridded solution
- A Particle-Particle **near-field correction** is used to properly retrieve electrostatics
- \Box O(N) scaling but slower than P3M.
- Sampling of the RHS of the Poisson equation and the near-field correction are the most extensive task.

***** The grid size and the support of the density control accuracy/speed!

[Bolten 2008, Arnold 2013]

Incremental Meshed Continuum Method (IMCM)

□ Sampling of the RHS can benefit from a divide and conquer

$$\rho^{sm} = \rho^{(Active)} + \rho^{(Restrained)}$$

□ The Particle-Particle near-field correction is treated with pair_***.cpp : ANLs

IMCM outperforms **P3M** for low numbers of active particles.

IMCM vs P3M for various proportions of restrained particles. NaCl system (64000 atoms in 113³ Å³ box)

[Edorh 2018]

Application : Polyelectrolyte translocation

60K particles
 Polyelectrolyte: 64 beads
 Pore length: 10 Å
 Electric field inside the pore
 LJ + Electrostatics

Ínría

CECAM-RA LAMMPS 26/06/2018

Application : Polyelectrolyte translocation

60K particles
Polyelectrolyte: 64 beads
Pore length: 10 Å
Electric field inside the pore
LJ + Electrostatics

Innía

- Incremental Multilevel Summation Method
- Improve performance on multicore architectures
- Applications such as channels in membrane proteins, ion implantation, molecular docking, protein folding
- Study of correlated motions (Essential dynamics using ARMD)

Publications

- Svetlana Artemova and Stephane Redon. Adaptively restrained particle simulations. Physical Review Letters, 109(19):190201, nov 2012. ISSN 00319007. doi: 10.1103/PhysRevLett.109.190201.
- Zofia Trstanova and Stephane Redon. Estimating the speed-up of adaptively restrained Langevin dynamics. Journal of Computational Physics, 336:412– 428,2017.
- Gabriel Stoltz and Zofia Trstanova. Stable and accurate schemes for langevin dynamics with general kinetic energies. arXiv preprint arXiv:1609.02891, 2016.
- Krishna Kant Singh and Stephane Redon. Adaptively Restrained Molecular Dynamics in LAMMPS. Modelling and Simulation in Materials Science and Engineering, 2017. ISSN 1361651X. doi: 10.1088/1361-651X/aa7345.
- Krishna Kant Singh, Dmitriy F. Marin, and Stephane Redon. Parallel adaptively restrained molecular dynamics. In High Performance Computing & Simulation(HPCS), 2017 International Conference on, pages 308–314. IEEE, 2017.
- Krishna Kant Singh and Stephane Redon. Single-pass incremental force updates for adaptively restrained molecular dynamics. Journal of Computational Chemistry, 2017. ISSN 1096-987X. doi: 10.1002/jcc.25126.
- Semeho Prince A. Edorh and Stéphane Redon. Incremental update of electrostatic interactions in adaptively restrained particle simulations. Journal of Computational Chemistry, 2018. doi: 10.1002/jcc.25215.
- Dmitriy F. Marin, and Stephane Redon. Parallel implementation of Adaptively Restrained Molecular Dynamics in LAMMPS using Kokkos. The International Journal of High Performance Computing Applications, (in review), 2018.

https://team.inria.fr/nano-d/

