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Classical MD simulations 

 Generate a temporal evolution (Positions 

and momenta) of a particle system 

 

 Retrieve macroscopic information by 

averaging properties  along trajectories 

 

 Expensive task due to force 

computations, especially for pairwise 
non-bonded forces 

 

 Most interaction forces are computed 

from the scratch at each timestep. 
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Adaptively Restrained MD simulations 

 ARMD freezes at each timestep some 

particles 

 

 Although the phase space is explored 

differently, several properties are 

preserved  

 

 Computationally less expensive when 

interaction forces depend upon 

interatomic distances 
 

 Interaction forces can be incrementally 
updated at each timestep. 
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ARMD: How it works? 
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[Artemova and Redon 2012] 
 



ARMD: The Hamiltonian  
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ARMD: Some properties  
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[Trstanova 2016] 
 



ARMD in LAMMPS 

 NVE ensemble: Fix_ARMD_NVE.cpp 
 

 NVT Langevin: Fix_ARMD_Langevin.cpp 
 

 Integrator: ARMD.cpp 
 

 Incremental algorithms for  non-bonded pairwise interactions 

 

 General treatment for short-range interactions  

 

 Specialized algorithms for electrostatics  

 

 ARMD in KOKKOS package 
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Short-range potentials 

 Several pair_***.cpp in LAMMPS 

 

 Van der Walls potentials (Lennard 

Jones, Buckingham, etc.) 

 

 

 Can be truncated beyond a certain 

cutoff 

 

 Efficiently computed with Neighbor 
Lists 
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Incremental Algorithms for short-range interactions 

 Restrained Interactions between restrained-
restrained particles 

 Active Interactions which involve at least one active 

particle (active-restrained, active-active) 

 Force decomposition: 
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[Edorh 2018] 
 

[Singh 2017] 
 



Active Neighbor lists 
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[Singh 2017] 
 



Benchmark: NVT simulation of LJ particles  
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[Singh 2017] 
 



Benchmark: NVT simulation of LJ particles + MPI  
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 MPI enabled 

 

 864K particles 

 

 8/16 CPUs Intel Xeon E5540 per node 

 

 Gigabit Ethernet network 

 

 

[Marin 2017] 
 

Breakdown of wall-clock time for 
1 and 4 nodes with 4 processes 
per each node normalized by 
LAMMPS timing for different 
percentage of restrained particles  
Other – Load balancing, ARMD routines 

for switched particles (ANL and force 
computations of switched particles), 
position & momenta update; comm – 
communications; neig – neighbor list 

construction; force – force computation 
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ARMD and KOKKOS 



 

 Nano-projectile: Cu
1000

 (r = 1.415 nm) 

 

 Substrate: Cu, 677K atoms  

   (L = 25 nm; H = 12.5 nm) 

 

 Nano-projectile velocity: 5 km/sec 

(8.25 eV per atom, total: 8.25 keV) 

 

 Truncated Lennard-Jones potential 

 

 Neighbor list update each 20 

timesteps 
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Benchmark: nano-projectile impact on surface 

[Marin 2018] 
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Parameters εr, εf are in eV. 

Nano-projectile: 8.25 eV per atom 

Slice: 1 nm 

Benchmark: nano-projectile impact on surface 

ARMD, εr = 1, εf = 2 Classical MD ARMD, εr = 3, εf = 4 
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Benchmark: nano-projectile impact on surface 
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The cluster volume as a number of missing atoms in 
the substrate.  

Classical MD 

Benchmark: nano-projectile impact on surface 
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[Marin 2018] 
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Incremental algorithms for Electrostatics 

 

 Long-range interactions (Electrostatics)  are 

extremely expensive 

 
 Electrostatics are efficiently handled by splitting 

short- and long- range contributions: 

     Pair.cpp + kspace.cpp 
 
 They can also benefit from adaptive restraints 

 
 Short-range terms are enhanced by ANLs 

 
 Long-range terms require more specific 

algorithms 
 

 Improved algorithms 

 Ewald summation 

 P3M 

 Meshed continuum method 
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Ewald summation 

 

 Coulomb point charges are smeared with Gaussians 

 

 Forces are split into Real- and Fourier- spaces contributions: 

 

 

 Real space :  

 

 

 K-space :  

 
 

 

Structure factor : 
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Incremental Ewald summation 
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Incremental Ewald summation 

Good acceleration but still slower than P3M 

Speedup as function of the proportion of restrained 
particles. 
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 Particle Particle Particle Mesh (P3M) 

 Ewald summation… but long-range terms are treated on a grid 

 

 Charges are sampled on a mesh  

 

 

  Electric field/Coulomb potential is retrieved with  Fast Fourier 

Transforms 

 

 

 Forces are  interpolated from the electric field 

 Grid size  and sigma controls accuracy/speed! 
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Incremental Particle Particle Particle Mesh (IP3M) 

 Divide and Conquer 

 

 

 

 

 

 

 

 Grid sizes can be  linked to the accuracy of 

computations 

 

 

 Electric field is evaluated at atomic positions 

 Problem 1  can be solved once. 

 

Valid only when particles can’t switch state 

Problem 1 Problem 2 
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Incremental Particle Particle Particle Mesh (IP3M) 

We can also handle switching particles 
Error in forces (x-direction) of  incremental Particle 

Particle Particle Mesh 
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Incremental Particle Particle Particle Mesh (IP3M) 

Evolution of the RMS force error of IP3M. 
90% of particles are restrained 1% of particles switch at each timestep. 

Speedup of long- (resp. short-) range calculations 1.35 (resp. 3.9). 
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Meshed Continuum Method (MCM) 

 The grid size  and the support of the density  control accuracy/speed! 

[Bolten 2008, Arnold 2013] 
 



- 27 CECAM-RA  LAMMPS  26/06/2018 

Incremental Meshed Continuum Method ( IMCM) 

 
 Sampling of the RHS can benefit from a divide and conquer 

 

 

 The Particle-Particle near-field correction  is treated with pair_***.cpp : ANLs 

 

 IMCM outperforms P3M  for low numbers of active particles. 
 

 

 

 

 

[Edorh 2018] 
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Application : Polyelectrolyte translocation 
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Application : Polyelectrolyte translocation 
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Future work 

 

 Incremental Multilevel Summation Method 

 

 Improve performance on multicore architectures 

 

 Applications such as channels in membrane proteins, ion implantation, 

molecular docking, protein folding 

 

 Study of correlated motions (Essential dynamics using ARMD) 
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