

Creep simulations with periodic boundary conditions using LAMMPS

Raffaela Cabriolu, Jürgen Horbach, Pinaki Chaudhuri,

Kirsten Martens

LIPhy

LAMMPS for molecular dynamics simulations : from development to applications

Lyon, June 26, 2018

Failure in soft materials under load

12th conference on sinkholes Cracks in cornstarch, L2C Crack at atomistic level,

G. Csányi, U. Cambridge

Why? How? **Prediction possible?**

ANR - project **FAPRES**

Examples of glassy material

Nicolas, Ferrero, KM & Barrat, Rev. Mod. Phys. (2018)

Simplified sketch

A.J.Liu & S.R.Nagel, 1998

homepage: G. Katgert, & M. van Hecke

Idea to compare foams to hard materials: L. Bragg & J.F. Nye (1947)

The different scales

Typical MD simulations

Langevin dynamics (friction with solvent):

$$\mathbf{F} = m\mathbf{a} = -\nabla V(\mathbf{r}) - \gamma m\mathbf{v} + \sqrt{2\gamma mk_b T}\mathbf{R}(t)$$

+ periodic boundary conditions+ shear (e.g. by tilting the simulation box)

Typical MD simulations

Langevin dynamics (friction with solvent):

$$\mathbf{F} = m\mathbf{a} = -\nabla V(\mathbf{r}) - \gamma m\mathbf{v} + \sqrt{2\gamma mk_b T}\mathbf{R}(t)$$

+ periodic boundary conditions+ shear (e.g. by tilting the simulation box)

Macroscopic response

Creep dynamics

Strain rate response to a sudden applied external stress

Bonn et al. Rev. Mod. Phys. 2017

Three dimensional glass-forming 50:50 colloidal binary mixture:

$$U_{1,2}(r) = arepsilon_{1,2} rac{exp(-k_{1,2}(r-d_{1,2}))}{r} \quad 1,2 \in \{a,b\}$$
 (Yukawa)

DPD equations of motion:

$$\begin{split} \dot{\mathbf{r}}_{i} &= \frac{\mathbf{p}_{i}}{m_{i}}; \qquad \dot{\mathbf{p}}_{i} = \sum_{j(\neq i)}^{N} \left[\mathbf{F}_{i,j} + \mathbf{F}_{i,j}^{D} + \mathbf{F}_{i,j}^{R} \right], \\ \mathbf{F}_{i,j} &= -\nabla (U_{i,j}) \quad \text{(Particle interactions)} \\ \mathbf{F}_{i,j}^{D} &= -\xi w^{2}(r_{i,j}) (\hat{\mathbf{r}}_{i,j} \cdot \mathbf{v}_{i,j}) \hat{\mathbf{r}}_{i,j} \quad \text{(DPD term for dissipation)} \\ \mathbf{F}_{i,j}^{R} &= \sqrt{2k_{B}T\xi} w(r_{i,j}) \theta_{ij} \hat{\mathbf{r}}_{i,j} \quad \text{(Random force obeying FDR)} \end{split}$$

Large density and low temperature (glassy regime):

$$\phi > \phi_J \quad T < T_g$$

Big question: How to implement correctly the bulk creep dynamics?

Impose a constant shear loading at fixed volume?

Big question: How to implement correctly the bulk creep dynamics?

Impose a constant shear loading at fixed volume?

Big question: How to implement correctly the bulk creep dynamics?

Impose a constant shear loading at fixed volume?

Impose shear stress through walls:

(Horbach, Chaudhuri, PRE 2013) Approach ok, but how to distinguish bulk dynamics and wall effects?

Big question: How to implement correctly the bulk creep dynamics?

Impose a constant shear loading at fixed volume?

Impose shear stress through walls:

(Horbach, Chaudhuri, PRE 2013) Approach ok, but how to distinguish bulk dynamics and wall effects?

SLLOD equation of motions:

Imposing homogeneous flow profile correct? No: Transient dynamics is very heterogeneous (formation of transient shear bands...)

Big question: How to implement correctly the bulk creep dynamics?

Impose a constant shear loading at fixed volume?

Impose shear stress through walls:

(Horbach, Chaudhuri, PRE 2013) Approach ok, but how to distinguish bulk dynamics and wall effects?

SLLOD equation of motions:

Imposing homogeneous flow profile correct? No: Transient dynamics is very heterogeneous (formation of transient shear bands...)

Big question: How to implement correctly the bulk creep dynamics?

Impose a constant shear loading at fixed volume?

Impose shear stress through walls:

(Horbach, Chaudhuri, PRE 2013) Approach ok, but how to distinguish bulk dynamics and wall effects?

SLLOD equation of motions:

Imposing homogeneous flow profile correct? No: Transient dynamics is very heterogeneous (formation of transient shear bands...)

Our proposition:

Adapt usual shear rate controlled protocol with periodic boundary conditions, using a feedback protocol (similar to experiments):

Evolution of time dependent shear rate:

$$\frac{d\dot{\gamma}(t)}{dt} = B[\sigma_0 - \sigma_{xy}(t)]$$

LAMMPS implementation

•••	
variable	sigmaxy equal -pxy
variable	sigma0 equal 0.09
variable	damp equal 1.0
variable	dt equal 0.0083
variable	Ly equal 30
change_box	all triclinic
fix	1 all nve
fix	2 all deform 1 xy variable v_deltatild v_rate remap x
variable	deltatild equal f_oldrate*\${dt}+f_oldtild
variable	rate equal f_oldrate+\${damp}*(\${sigma0}-v_sigmaxy)*\${dt}*\${Ly}
fix	oldtild all ave/time 1 1 1 v_deltatild
fix	oldrate all ave/time 1 1 1 v_rate

...

Testing the feedback protocol

10⁻⁵

10⁻⁴

10⁻³

10⁻²

Typical creep curves (averaged over 80 samples):

Compliance curves reveal onset of plasticity and finite size effects

Cabriolu, Horbach, Chaudhuri & KM, to be published

Fluctuations in strain reveal onset plasticity and finite size effects

Fluctuations in strain reveal onset fluidisation and finite size effects

Cabriolu, Horbach, Chaudhuri & KM, to be published

- New technique to impose a shear stress at fixed volume with periodic boundary conditions
- Study of onset of plasticity and finite size effects in without any wall effects
 - Observation of precursors of fluidisation in the strain fluctuations