

◆□▶ ◆□▶ ◆□▶ ◆□▶ □ ○ ○ ○

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aerogel Conclusions Atomic scale simulations with Lammps in material science: from polymers to metallurgy

R. Veiga, O. Waseda, A. Makke, W. Goncalves, J. Morthomas, P. Chantrenne, J. Amodeo and <u>Michel Perez</u>

Université de Lyon - INSA Lyon - MATEIS - UMR CNRS 5512

26 juin 2018

Outline...

LAMMPS in material science

Material science at MATEIS

- 2 Buckling in nano-structured block copolymers
- Ageing in Fe-C steels
- - 4 Mechanical properties of silica aerogels

Conclusions 5

MATEIS: MATerials Engineering and Sciences

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aerogels Conclusions

Recyclable polymers ?

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aerogels Conclusions

Elastomers vs thermoplastics

- Elastomers
 - Liquid solids!
 - amazing elastic properties (thanks to entropy)
- Thermoplastics
 - soften when heated
 - reversible (\rightarrow recyclable !)

Copolymers

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aerogels Conclusions

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

... but, always

- a hard phase ($T < T_g$)
- a soft phase ($T > T_g$)

Strange coupling between phases

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aerogels Conclusions

Method: Molecular Dynamics

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aerogels Conclusions

Principle

- Newtons 2nd law $m_i \frac{d\mathbf{v}}{dt} = \mathbf{f_i}$
- Interactions de paires: $\mathbf{f_i} = \sum_j \mathbf{f_{ij}} = \sum_j \mathbf{grad} V_{ij}$

'Coarse grained" MD

Tri-block generation: Radical-like Polymerization (lammps fix) ⁽¹⁾ [Mahaud, *Comp. Soft.* 24 (2018)]

Method: Molecular Dynamics

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aerogels Conclusions

Principle

- Newtons 2nd law $m_i \frac{d\mathbf{v}}{dt} = \mathbf{f_i}$
- Interactions de paires: $\mathbf{f_i} = \sum_j \mathbf{f_{ij}} = \sum_j \mathbf{grad} V_{ij}$

'Coarse grained" MD

Tri-block generation: Radical-like Polymerization (lammps fix) [Mahaud, Comp. Soft. 24 (2018)]

science

Tensile test

Perpendicular to lamellae

Block copolymers FeC steels Silica aerogel Conclusions

・ロト・日本・日本・日本・日本・日本

science

Tensile test

Perpendicular to lamellae

Block copolymers FeC steels Silica aerogel Conclusions

science

Tensile test

Perpendicular to lamellae

MATEIS

Block copolymers FeC steels Silica aerogel: Conclusions

science

Tensile test

Perpendicular to lamellae

Block copolymers FeC steels Silica aerogel Conclusions

science

Tensile test

Perpendicular to lamellae

Silica aerogels

science

Tensile test

Perpendicular to lamellae

MATEIS

Block copolymers FeC steels Silica aerogel: Conclusions

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

science

Tensile test

Perpendicular to lamellae

MATEIS

Block copolymers FeC steels Silica aerogel: Conclusions

science

Tensile test

Perpendicular to lamellae

MATEIS

Block copolymers FeC steels Silica aerogel Conclusions

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

science

Tensile test

Perpendicular to lamellae

Block copolymers FeC steels Silica aerogel Conclusions

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

science

Tensile test

Perpendicular to lamellae

FeC steels Silica aerogel

science

Tensile test

Perpendicular to lamellae

◆□▶ ◆□▶ ◆三▶ ◆三▶ ●□ ● ●

science

Tensile test

Perpendicular to lamellae

copolymers FeC steels Silica aeroge

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ 三臣 - ∽ � � �

science

Tensile test

Perpendicular to lamellae

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへ⊙

science

Tensile test

Perpendicular to lamellae

Block copolymers FeC steels Silica aerogel Conclusions

・ロト・西ト・ヨト・ヨー シック

LAMMPS in material science

Problem solved !

Experiment vs simulations

MATEIS

Block copolymers FeC steels Silica aerogels Conclusions

- Buckling phenomena reproduced
- Due to mechanical coupling between hard and soft phases

Topics

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aerogel:

A Fe-C interatomic potential

LAMMPS in material science

MATEIS

Block copolymers

FeC steels

Silica aerogels Conclusions

- Goal: Fe-C interaction potential for Molecular Dynamics
- Two reference configurations:
 - C in octahedral and tetrahedral sites

• Correct energy barrier for diffusion: 0.815 eV

A Fe-C interatomic potential

LAMMPS in material science

MATEIS

Block copolymers FeC steels

Silica aerogels Conclusions

- Goal: Fe-C interaction potential for Molecular Dynamics
- Two reference configurations:
 - C in octahedral and tetrahedral sites

- Correct energy barrier for diffusion: 0.815 eV
- Test on many configurations (C, Fe, Va)
 Tabulated potential for Mol. Dyn. and Monte-Carlo

C diffusion in pure Fe

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aeroge Conclusions

- Not following experiments...
- ... but we understand MD non linearity!

LAMMPS in

Fe, C and dislocations

Binding energy of C around dislocation core

MATEIS

Block copolymers FeC steels Silica aerogels Conclusions

Metropolis Monte-Carlo

FeC steels

Kinetic Monte-Carlo

LAMMPS in material science

MATEIS

Block copolymers

FeC steels

Conclusions

Principle

• Transition frequency from $i \rightarrow j$: $w_j^i = w_0 \exp\left(\frac{-\Delta E_{ij}}{kT}\right) \ w_0 \approx 10^{14} \text{ Hz}$

• Residence time *i*

$$r_1 \rightarrow \tau_R = -\frac{\ln r_1}{\sum_j w_j}$$

• Choice of a particular transition $\textcircled{}{}^{2}$ r_2

Example: precipitation from a supersaturated solid solution

Brute force

MATEIS

Block copolymers FeC steels

Silica aerogels Conclusions

Migration energy of C around dislocation core Veiga et al, Acta Mater. 59 (2011)]

• All saddle point energy for all possible transition around a dislocation !

Kinetic Monte-Carlo

MATEIS

Block copolymers FeC steels

science

FeC steels

And now... carbides !

Needs for stronger C-C interactions

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Silica Aerogel

Amazing thermal properties

• But poor (and not understood) mechanical properties

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aerogels

Conclusion

Molecular dynamics on large volume

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aerogels Conclusions

Molecular dynamics on large volume

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aerogels

Conclusions

LAMMPS in material science

MATEIS

Block copolymers FeC steels Silica aeroge

Conclusions

Take home messages

- LAMMPS is great !
- Strong need to develop new potentials
- LAMMPS as a library is convenient (but not fast !)

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Need for a place to publish/share new fixes

Conclusions

Take home messages

- LAMMPS is great !
- Strong need to develop new potentials
- LAMMPS as a library is convenient (but not fast !)
- Need for a place to publish/share new fixes

9 Q P

LAMMPS in material science

MATEIS

Block copolymers FeC steels

Conclusions