

Molecular views on thermo-osmotic flows

U (R,L)

Li Fu, Samy Merabia, Laurent Joly

Univ Lyon, Université Claude Bernard Lyon 1, CNRS, Institut Lumière Matière, F-69622, Villeurbanne, France http://ilm-perso.univ-lyon1.fr/~ljoly/

Nanofluidics with LAMMPS

Micro/nanofluidic transport: from molecular mechanisms to applications

Interfacial hydrodynamics Liquid/solid friction

Understanding water

Energy conversion Electrokinetic effects

Nanofluidics with LAMMPS

Micro/nanofluidic transport: from molecular mechanisms to applications

Nanoscale flows

Lubrication

Devices

Surface-driven flows generated by non-hydrodynamic forcing

Micro/nanofluidics, sustainable energies (e.g. waste heat harvesting)

Originate in a nanometric interfacial layer

Nanoscale structure and dynamics

Osmotic flows

Surface-driven flows generated by non-hydrodynamic forcing

Micro/nanofluidics, sustainable energies (e.g. waste heat harvesting)

Originate in a nanometric interfacial layer

Nanoscale structure and dynamics

Nanofluidic systems under thermal gradients

For applications

Zhao & Wu Nano Lett 2015

Molecular mechanisms?

Oyarzua, Walther & Zambrano, PCCP 2018

Ganti, Liu & Frenkel, PRL 2017

Effect of wetting and interfacial hydrodynamics?

Theory

Thermo-osmosis

 \succ flow induced by a thermal gradient: $v_s = M_{12}(-rac{
abla T}{T})$

Mechano-caloric effect

heat flux induced by a pressure gradient:

$$j_h = M_{21}(-\nabla p)$$

Standard prediction:

 $M_{12} = M_{21} = \frac{1}{\eta} \int_0^{+\infty} z \,\delta h(z) \,dz$ Derjaguin and Sidorenkov, 1941 enthalpy density excess

Interfacial hydrodynamics: stagnant layer (*z*_s), slip (*b*)...

$$M_{12} = M_{21} = \frac{1}{\eta} \int_{z_s}^{+\infty} (z - z_s + b) \,\delta h(z) \,\mathrm{d}z$$

Following analogous treatment of electro-osmosis by Huang et al.

Generic Lennard-Jones interaction potential: $V(r) = 4\varepsilon[(\sigma/r)^{12} - (\sigma/r)^6]$

Effect of wetting?

Varying liquid-solid interaction energy $arepsilon_{
m ls}$

Measurements

$$j_{h} = M_{21}(-\nabla p)$$

$$j_{h} = \int \delta h(z) v_{x}(z) dz$$

$$-\nabla p = f_{V} = f_{i} N/V$$

$$v_s = M_{12}(-\frac{\nabla T}{T})$$

$$\int_{\text{m \# of}} \int_{\text{f}} \int_{\text{$$

from # of particles in reservoirs from temperature profile in channel

Theoretical prediction

$$M_{12} = M_{21} = \frac{1}{\eta} \int_{z_s}^{+\infty} (z - z_s + b) \delta h(z) dz$$

- hydrodynamics: from Poiseuille flow in mechano-caloric configuration
- thermodynamics: from equilibrium simulations

$$\delta h_{\rm eq}(r;T) = h_{\rm eq}(r;T) - h_{\rm bulk}(T)$$
$$h(r) = (u_i(r) + p_i^{zz}(r))\rho(r),$$

Measurements

$$j_{h} = M_{21}(-\nabla p)$$

$$j_{h} = \int \delta h(z) v_{x}(z) dz$$

$$-\nabla p = f_{V} = f_{i} N/V$$

$$v_s = M_{12}(-\frac{\nabla T}{T})$$

from # of particles in reservoirs from temperature profile in channel

Theoretical prediction

$$M_{12} = M_{21} = \frac{1}{\eta} \int_{z_s}^{+\infty} (z - z_s + b) \delta h(z) dz$$

hydrodynamics: from Poiseuille flow in mechano-caloric configuration

thermodynamics: from equilibrium simulations

$$\delta h_{eq}(r;T) = h_{eq}(r;T) - h_{bulk}(T)$$

$$s_{ab} = -\left[mv_a v_b + \frac{1}{2}\sum_{n=1}^{N_p}(r_{1a}F_{1b} + r_{2a}F_{2b}) + \frac{1}{2}\sum_{n=1}^{N_b}(r_{1a}F_{1b} + r_{2a}F_{2b}) + \frac$$

Results

Thermo-osmotic route > viscous entrance effects

Wetting systems

- $> |M_{21}| \sim 0.1\sigma^2/\tau \sim 10^{-8} \,\mathrm{m}^2/\mathrm{s}$
- cf. experiments ~ 10⁻¹⁰ to 10⁻⁹ m²/s
- change of sign

cf. Lüsebrink, Yang, Ripoll, JPCM 2012

Non-wetting systems

giant response

up to $\,\sim 35 \sigma^2/\tau \sim 4 \times 10^{-6}\, m^2/s$

Interfacial hydrodynamics

Wetting systems

Oscillations of the excess enthalpy

 \succ crucial role of z_s

$$M_{12} = M_{21} = \frac{1}{\eta} \int_{z_s}^{+\infty} (z - z_s + b) \,\delta h(z) \,\mathrm{d}z$$

Fu, Merabia, Joly, PRL 2017

Non-wetting systems

Molecular thickness of the interaction layer

large amplification by slip

cf.

electro-osmosis: Joly et al. PRL 2004, JCP 2006 Joly et al. PRL 2014, Barbosa De Lima & Joly 2017 diffusio-osmosis: Ajdari & Bocquet, PRL 2006 thermo-phoresis: Morthomas, Würger, JPCM 2009

Water-graphene interface

Giant thermo-osmotic response:

$$M_{21} = (2.5 \pm 0.3) \times 10^{-6} \,\mathrm{m}^2/\mathrm{s}$$

Waste heat harvesting with graphitic membranes?

- entrance pressure drop
- thermal short-circuit by walls
- desalination applications: ultra-confinement

Analytical model coupling thermodynamics and hydrodynamics

$$U = \frac{R \,\overline{\delta h}}{2\lambda L + \pi C \eta} \times \frac{\Delta T}{T_{\text{avg}}} \times \left(1 - \frac{T_{\text{avg}} \,\Delta \Pi}{\Delta T \,\overline{\delta h}}\right)$$

 $\overline{\delta h}$: average enthalpy excess density over the section of the tube

- λ : friction coefficient
- C: numerical constant depending on the geometry and the hydrodynamic boundary condition => entrance effects

 $\Delta \Pi$: osmotic pressure

MD simulations

Fu, Merabia, Joly, J. Phys. Chem. Lett. 2018

Carbon nanotube membranes

Pumping ($\Delta \Pi$ = 0)

$$U = \frac{R \overline{\delta h}}{2\lambda L + \pi C \eta} \times \frac{\Delta T}{T_{\text{avg}}}$$

Desalination / overcoming a pressure difference

$$\Delta \Pi_{\rm max} = \overline{\delta h} \times \Delta T / T_{\rm avg}.$$

cf. Dariel & Kedem J. Phys. Chem. 1975

> Model validated by MD results -> can help searching for other innovative membranes

Fast and robust flows (even when extrapolated to experimental parameters)

Conclusion

Osmotic flows generated in the nanometric vicinity of interfaces

- Molecular structure and dynamics
- Interfacial hydrodynamics can control amplitude and sign of the response!

Molecular dynamics simulations

However:

- Numerical investigations limited to classical molecular dynamics
- \rightarrow reactivity? see e.g. Joly et al., J. Phys. Chem. Lett. 2016

NECtAR project: Nanofluidic Energy Conversion using reActive suRfaces https://sites.google.com/site/anrnectar/

Bonhomme, Blanc, Joly, Ybert, Biance, Adv. Colloid Interface Sci. 2017 Hartkamp, Biance, Fu, Dufrêche, Bonhomme, Joly, submitted to Curr. Opin. Colloid Interface Sci

Thank you

Li Fu Samy Merabia

- French National Research Agency, project NECtAR
- Institut Universitaire de France

Joly, Detcheverry, Biance, PRL 2014 Barbosa De Lima, Joly, Soft Matter 2017 Lee, Cottin-Bizonne, Fulcrand, Joly, Ybert, J. Phys. Chem. Lett. 2017 Fu, Merabia, Joly, PRL 2017 Fu, Merabia, Joly, J. Phys. Chem. Lett. 2018

http://ilm-perso.univ-lyon1.fr/~ljoly/

Thermo-osmosis: waste heat

Heat management: a crucial challenge

- Waste heat produced by industry and energy conversion
- Large fraction of low grade waste heat

Energy loss through waste heat (Penn State University) Distribution of waste heat in industry

Could nanofluidic systems be used for (low grade) waste heat harvesting?

Interfacial hydrodynamics

Joly et al., PRL 2014 Barbosa De Lima & Joly 2017

Ajdari & Bocquet, PRL 2006

A more general model

Continuum hydrodynamics (cst η), partial slip BC

$$\frac{\mathrm{d}^2 v_x}{\mathrm{d}z^2} = -\frac{E_x}{\eta} \rho_\mathrm{e}(z) \quad \text{with} \quad v_x(z_\mathrm{w}) = b \left. \frac{\mathrm{d}v_x}{\mathrm{d}z} \right|_{z=z_\mathrm{w}}$$

Stokes equation

Partial slip BC at $z = z_w$

$$\zeta = \frac{\eta v_{\rm eo}}{\varepsilon E_x} = \frac{\eta v_x(0)}{\varepsilon E_x} = \frac{1}{\varepsilon} \int_{z_{\rm w}}^0 \mathrm{d}z \, (z - z_{\rm w} + b) \rho_{\rm e}(z)$$

 ε = bulk permittivity, no assumption on $\varepsilon(z)$ close to the surface

Uncharged surfaces:

$$\int_{z_{
m w}}^{0}\mathrm{d}z\,
ho_{
m e}(z)=0$$

$$\zeta = \frac{1}{\varepsilon} \int_{z_{\rm w}}^{0} \mathrm{d}z \, z \rho_{\rm e}(z)$$

independent of b (i.e. of friction)

Huang et al., PRL 2007, Langmuir 2008

Thermal gradient → thermodynamic force density

$$f_{\rm thermo} \approx \delta h_{\rm eq}(r; T_{\rm avg}) \, \frac{\nabla T(z)}{T_{\rm avg}}, \qquad \text{with} \qquad \begin{array}{l} \delta h_{\rm eq}(r; T) = h_{\rm eq}(r; T) - h_{\rm bulk}(T) \\ h(r) = \ (u_i(r) + p_i^{zz}(r))\rho(r), \end{array}$$

Fluid friction on the wall: $F_{\text{friction}} = 2\pi R L \lambda v_{\text{osm}}$

Bare thermo-osmotic velocity in the tube (large slip limit)

$$v_{\rm osm} = \frac{R \,\overline{\delta h}}{2\lambda L} \times \frac{\Delta T}{T_{\rm avg}}. \qquad \text{with} \qquad \overline{\delta h} = \frac{1}{\pi R^2} \int_0^R \mathrm{d}r \, 2\pi r \, \delta h_{\rm eq}(r; T_{\rm avg}),$$

General hydrodynamic boundary condition

$$v_{\rm osm} = \frac{R^2}{4\eta L} \left(1 + \frac{2b}{R} \right) \times \overline{\delta h} \times \frac{\Delta T}{T_{\rm avg}}, \quad \text{with} \quad \overline{\delta h} = \frac{1}{\pi R^2} \int_0^R \mathrm{d}r \, 2\pi r \, \delta h \, \left(1 - \frac{r^2}{R^2 + 2bR} \right),$$

Model (2)

Backflow due to:

- \blacktriangleright viscous entrance pressure drop $\Delta p_{
 m in} = (\pi C \eta/R) imes U$.
- \succ pressure difference between reservoirs $\Delta\Pi$

Sampson, 1891

Total velocity through the membrane (large slip limit)

$$U = \frac{R \,\overline{\delta h}}{2\lambda L + \pi C \eta} \times \frac{\Delta T}{T_{\text{avg}}} \times \left(1 - \frac{T_{\text{avg}} \,\Delta \Pi}{\Delta T \,\overline{\delta h}}\right).$$
$$\Delta \Pi_{\text{max}} = \overline{\delta h} \times \Delta T / T_{\text{avg}}.$$

General hydrodynamic boundary condition

cf. Dariel & Kedem J. Phys. Chem. 1975

$$U = \frac{R^2 \left(1 + \frac{2b}{R}\right) \times \overline{\delta h} \times \left(\Delta T / T_{\text{avg}}\right)}{4\eta L + \frac{\pi C \eta R}{2} \left(1 + \frac{4b}{R}\right)} \times \left(1 - \frac{\left(1 + \frac{4b}{R}\right)}{2 \left(1 + \frac{2b}{R}\right)} \times \frac{T_{\text{avg}} \Delta \Pi}{\Delta T \,\overline{\delta h}}\right)$$

Quantitative match between model and MD results

- Crucial role of hydrodynamics
- The MD-validated model can predict velocity in experimental situations

Giant velocities, despite entrance effects and thermal short-circuit mechanism

- Reaching a plateau ~ 0.5 m/s for large radii
- Complex dependency on R for small radii

Enthalpy profiles

> Weak confinement: model predicts $\overline{\delta h}$ varies as 1/R. > constant velocity

> Strong confinement: overlap of the interaction layers \rightarrow complex evolution of $\overline{\delta h}$

Overcoming a pressure difference

Desalination possible!

> MD simulation with $\Delta \Pi = 2.8 \text{ MPa} \rightarrow U = 0.38 \pm 0.18 \text{ m/s}$

(model: $U = 0.44 \pm 0.06 \,\mathrm{m/s}$)