

Simulating the structural diversity of astrophysical carbon clusters

Cyril Falvo

Institut des Sciences Moléculaires d'Orsay Université Paris Sud – Université Paris Saclay Laboratoire Interdisciplinaire de Physique Université Grenoble Alpes

- Institut des Sciences Moléculaires d'Orsay Université Paris Sud
 - Maëlle Bonnin
 - Pascal Parneix
 - Thomas Pino
- Laboratoire Interdisciplinaire de Physique Université Grenoble Alpes
 - Florent Calvo

Carbon clusters: an astrophysical issue

~200 molecules have been detected in the Interstellar medium (ISM)

Horsehead nebula

Iris nebula

• The ISM is composed of H, He, C, O, N, ...

Carbon clusters: an astrophysical issue

- The presence of polycyclic aromatic hydrocarbons (PAH) in the ISM have been suggested for more than 30 years.
- No clear identification of a specific PAH have been achieved

а CC stretch CH stretch Combination CH in-plane CH out-of-plane modes bending bending Plateau 140 120 100 80 Flux density (10⁻¹³ W m⁻² µm⁻¹) 60 40 20 NGC 7027 30 25 20 15 10 5 Orion Bar (H2S1) 7 10 20 4 5 6 8 9 Wavelength (µm)

Tielens, Annu. Rev. Astron. Astrophys. 46, 289 (2008)

Carbon clusters: an astrophysical issue

• C₆₀ Buckminsterfullerene have been identified in 2010 in the ISM

Sellgren et al. Astrophys. J. Lett. 722, L54 (2010)

- Explore the diversity of hydrocarbon structures without preconceived model through the use of atomistic simulations
- Compute the spectroscopic response (IR and UV/Visible) of these structures
- Link structure to spectroscopic response in order to obtain more information from observational data

- Explore the diversity of hydrocarbon structures without preconceived model through the use of atomistic simulations
- Compute the spectroscopic response (IR and UV/Visible) of these structures
- Link structure to spectroscopic response in order to obtain more information from observational data

We start with carbon clusters C_{24} , C_{42} , and C_{60}

• Ab-initio or semi-empirical potentials cannot be used on a large scale potential energy surface (PES) exploration

- Ab-initio or semi-empirical potentials cannot be used on a large scale potential energy surface (PES) exploration
- To describe the interaction between carbon atoms we need a <u>reactive potential</u>

- Ab-initio or semi-empirical potentials cannot be used on a large scale potential energy surface (PES) exploration
- To describe the interaction between carbon atoms we need a <u>reactive potential</u>
- The Reactive Empirical Bond Order Potential (REBO) can describe C and H atoms. It includes short-range interactions only

- Ab-initio or semi-empirical potentials cannot be used on a large scale potential energy surface (PES) exploration
- To describe the interaction between carbon atoms we need a <u>reactive potential</u>
- The Reactive Empirical Bond Order Potential (REBO) can describe C and H atoms. It includes short-range interactions only
- The Adaptative Intermolecular Reactive Bond Order Potential (AIREBO) is built upon REBO and includes long-range interactions and single bond torsional interactions

- Ab-initio or semi-empirical potentials cannot be used on a large scale potential energy surface (PES) exploration
- To describe the interaction between carbon atoms we need a <u>reactive potential</u>
- The Reactive Empirical Bond Order Potential (REBO) can describe C and H atoms. It includes short-range interactions only
- The Adaptative Intermolecular Reactive Bond Order Potential (AIREBO) is built upon REBO and includes long-range interactions and single bond torsional interactions
- REBO and AIREBO have been used for a large variety of materials (graphene, diamond,...) as well as molecules

- Ab-initio or semi-empirical potentials cannot be used on a large scale potential energy surface (PES) exploration
- To describe the interaction between carbon atoms we need a <u>reactive potential</u>
- The Reactive Empirical Bond Order Potential (REBO) can describe C and H atoms. It includes short-range interactions only
- The Adaptative Intermolecular Reactive Bond Order Potential (AIREBO) is built upon REBO and includes long-range interactions and single bond torsional interactions
- REBO and AIREBO have been used for a large variety of materials (graphene, diamond,...) as well as molecules
- Both REBO and AIREBO are implemented in LAMMPS

- Ab-initio or semi-empirical potentials cannot be used on a large scale potential energy surface (PES) exploration
- To describe the interaction between carbon atoms we need a <u>reactive potential</u>
- The Reactive Empirical Bond Order Potential (REBO) can describe C and H atoms. It includes short-range interactions only
- The Adaptative Intermolecular Reactive Bond Order Potential (AIREBO) is built upon REBO and includes long-range interactions and single bond torsional interactions
- REBO and AIREBO have been used for a large variety of materials (graphene, diamond,...) as well as molecules
- Both REBO and AIREBO are implemented in LAMMPS

A REBO and AIREBO have suffered and <u>still</u> suffer from several issues in LAMMPS

 REBO potential introduced in 1990 by Brenner

$$V = \sum_{i < j} \left(V^R(r_{ij}) - b_{ij} V^A(r_{ij}) \right)$$

b_{ij}: function of the environment of the bond.
Includes 3-body and 4-body terms

Figure 1. Plots of the pair potentials (5) and (6) obtained using the parameters in table 1. T attractive and repulsive pair terms as a function of interatomic distance. Bottom: pair te triple bonds (dotted curve), double bonds (solid curve), and single bonds (dashed curve) o by multiplying the attractive pair term by the appropriate bond order value and adding is repulsive pair term.

Brenner et al. J. Phys. Cond. Mat., 14, 783 (2002)

LAMMPS

• AIREBO potential introduced in 2000 by Stuart Stuart et al., JCP **112** 6472 (2000)

(AI)REBO in LAMMPS

 It has been known for several years that (AI)REBO implemented in LAMMPS suffered from bugs

(AI)REBO in LAMMPS

- It has been known for several years that (AI)REBO implemented in LAMMPS suffered from bugs
- Trajectories were crashing and energy was not conserved

- It has been known for several years that (AI)REBO implemented in LAMMPS suffered from bugs
- Trajectories were crashing and energy was not conserved
- Several LAMMPS users/developers contributed to fix several bugs in the force calculation of the (AI)REBO potentials

- It has been known for several years that (AI)REBO implemented in LAMMPS suffered from bugs
- Trajectories were crashing and energy was not conserved
- Several LAMMPS users/developers contributed to fix several bugs in the force calculation of the (AI)REBO potentials
- With the Aug. 2017 release of LAMMPS these bugs were corrected
 - spline coefficients read from an input file did not correspond to hard-coded parameters
 - AIREBO in LAMMPS was implemented from a transcription of a Fortran code which included a bug in the force calculation (LJ part).

Benchmark: liquid carbon

- Box of 128 carbon atoms at 5000 K with PBC (NVT) ρ =2 g.cm^-3, Δt =0.01 fs

Benchmark: liquid carbon

- Box of 128 carbon atoms at 5000 K with PBC (NVT) ρ =2 g.cm^-3, Δt =0.01 fs

Can we now safely use AIREBO with LAMMPS ?

• Box of I28 carbon atoms at 5000 K with PBC (NVT) ρ =2 g.cm^-3

- Box of I28 carbon atoms at 5000 K with PBC (NVT) ρ =2 g.cm^-3

Energy jumps remain even at very small timesteps

 In AIREBO long-range interactions (LR) are switched off at short range with a connectivity switch C_{ij} (using the REBO bonding information)

Non-bonded interaction in AIREBO

- In AIREBO long-range interactions (LR) are switched off at short range with a connectivity switch C_{ij} (using the REBO bonding information)
- LR interactions between atoms *i* and *j* are switched off
 - if *i* and *j* are first neighbors (1-2 interactions)
 - If *i* and *j* are second neighbors (1-3 interactions)
 - If *i* and *j* are third neighbors (1-4 interactions)

Non-bonded interaction in AIREBO

- In AIREBO long-range interactions (LR) are switched off at short range with a connectivity switch C_{ij} (using the REBO bonding information)
- LR interactions between atoms *i* and *j* are switched off
 - if *i* and *j* are first neighbors (1-2 interactions)
 - If *i* and *j* are second neighbors (1-3 interactions)
 - If *i* and *j* are third neighbors (1-4 interactions)

 $C_{ij} = 1 - \max\{w_{ij}(r_{ij}), w_{ik}(r_{ik})w_{kj}(r_{kj}) \; \forall k, w_{ik}(r_{ik})w_{kl}(r_{kl})w_{lj}(r_{lj}) \; \forall k, l\}$

 $w_{ij}(r_{ij})$ REBO cutoff for short range interactions

The max function is not differentiable !

Non-bonded interaction in AIREBO

- In AIREBO long-range interactions (LR) are switched off at short range with a connectivity switch C_{ij} (using the REBO bonding information)
- LR interactions between atoms *i* and *j* are switched off
 - if *i* and *j* are first neighbors (1-2 interactions)
 - If *i* and *j* are second neighbors (1-3 interactions)
 - If *i* and *j* are third neighbors (1-4 interactions)

 $C_{ij} = 1 - \max\{w_{ij}(r_{ij}), w_{ik}(r_{ik})w_{kj}(r_{kj}) \; \forall k, w_{ik}(r_{ik})w_{kl}(r_{kl})w_{lj}(r_{lj}) \; \forall k, l\}$

 $w_{ij}(r_{ij})$ REBO cutoff for short range interactions

The max function is not differentiable !

• Smooth version of the connectivity switch

$$C_{ij} = (1 - w_{ij}) \prod_{k \neq i,j} (1 - w_{ik} w_{kj}) \prod_{k,l \neq i,j} (1 - w_{ik} w_{kl} w_{lj})$$

 \triangle this function has not been properly tested

Benchmark: liquid carbon

• Box of 128 carbon atoms at 5000 K with PBC (NVT) ρ =2 g.cm^-3, Δt =0.01 fs

LAMMPS

Can we safely use AIREBO with LAMMPS ?

Can we safely use AIREBO with LAMMPS ?

Can we safely use AIREBO with LAMMPS ? Can we safely use AIREBO ?

• Some parameters in AIREBO are different from the REBO parameters

What about REBO in LAMMPS ?

- Some parameters in AIREBO are different from the REBO parameters
- LAMMPS used only the AIREBO parameters

- Some parameters in AIREBO are different from the REBO parameters
- LAMMPS used only the AIREBO parameters
- This have been first pointed out by Favata et al. Comp. Phys. Comm. (2016)

- Some parameters in AIREBO are different from the REBO parameters
- LAMMPS used only the AIREBO parameters
- This have been first pointed out by Favata et al. Comp. Phys. Comm. (2016)
- This has been partially fixed in LAMMPS

- Some parameters in AIREBO are different from the REBO parameters
- LAMMPS used only the AIREBO parameters
- This have been first pointed out by Favata et al. Comp. Phys. Comm. (2016)
- This has been partially fixed in LAMMPS
- We can compare the atomization energies computed with LAMMPS and those given in Brenner et al. J. Phys. Cond. Mat., 14, 783 (2002)

- LAMMPS used only the AIREBO parameters
- This have been first pointed out by Favata et al. Comp. Phys. Comm. (2016)
- This has been partially fixed in LAMMPS
- We can compare the atomization energies computed with LAMMPS and those given in Brenner et al. J. Phys. Cond. Mat., 14, 783 (2002)

	Brenner 2002	REBO	REBO'
Ethylene	-24.4077	-24.5284	-24.4077
Cyclopropene	-28.2589	-28.3610	-28.2589
Allene	-30.2392	-30.3511	-30.2392
Propene	-37.3047	-37.5116	-37.3047
Cyclobutene	-42.1801	-42.3536	-42.1797
1,3-Butadiene	-43.0035	-43.3977	-43.0035
1-Butene	-50.0487	-50.2557	-50.0486
2-Butene	-50.2017	-50.4951	-50.2016
1,4-Pentadiene	-56.5078	-56.9220	-56.5079
Cyclopentene	-57.1119	-57.3895	-57.1121
2-Methyl-1-butene	-62.9658	-63.0254	-62.9658
2-Methyl-2-butene	-63.1109	-63.2642	-63.1188
Benzene	-59.3096	-60.2313	-59.3096
Naphthalene	-93.8784	-95.0955	-93.8785

REBO: potential given in distributed version of LAMMPS (02/2018)

REBO': modified potential according to the parameters given in Brenner et al. J. Phys. Cond. Mat., 14, 783 (2002)

- LAMMPS used only the AIREBO parameters
- This have been first pointed out by Favata et al. Comp. Phys. Comm. (2016)
- This has been partially fixed in LAMMPS
- We can compare the atomization energies computed with LAMMPS and those given in Brenner et al. J. Phys. Cond. Mat., 14, 783 (2002)

	Brenner 2002	REBO	REBO'
Ethylene	-24.4077	-24.5284	-24.4077
Cyclopropene	-28.2589	-28.3610	-28.2589
Allene	-30.2392	-30.3511	-30.2392
Propene	-37.3047	-37.5116	-37.3047
Cyclobutene	-42.1801	-42.3536	-42.1797
1,3-Butadiene	-43.0035	-43.3977	-43.0035
1-Butene	-50.0487	-50.2557	-50.0486
2-Butene	-50.2017	-50.4951	-50.2016
1,4-Pentadiene	-56.5078	-56.9220	-56.5079
Cyclopentene	-57.1119	-57.3895	-57.1121
2-Methyl-1-butene	-62.9658	-63.0254	-62.9658
2-Methyl-2-butene	-63.1109	-63.2642	-63.1188
Benzene	-59.3096	-60.2313	-59.3096
Naphthalene	-93.8784	-95.0955	-93.8785

REBO: potential given in distributed version of LAMMPS (02/2018)

REBO': modified potential according to the parameters given in Brenner et al. J. Phys. Cond. Mat., 14, 783 (2002)

average error for REBO: 335 meV average error for REBO': 2 meV

• Carbon clusters are described by a complex and very rugged potential energy surface (PES) which includes a tremendously large number of local minima.

- Carbon clusters are described by a complex and very rugged potential energy surface (PES) which includes a tremendously large number of local minima.
- The use of traditional Monte-Carlo (MC) simulations cannot explore efficiently the PES

- Carbon clusters are described by a complex and very rugged potential energy surface (PES) which includes a tremendously large number of local minima.
- The use of traditional Monte-Carlo (MC) simulations cannot explore efficiently the PES

Use of Replica Exchange Molecular Dynamics (REMD) simulations

• REMD simulation over a wide range of temperature T~2000 K — 6500 K using REBO

- REMD simulation over a wide range of temperature T~2000 K 6500 K using REBO
- Use of spherical boundary conditions with various densities ρ =0.025 g/cm³ 1.7 g/cm³

Simulation protocol

• REMD simulation over a wide range of temperature T~2000 K — 6500 K using REBO

-							_
	Cluster	Т _{тіп} (К)	Т _{тах} (К)	N _{temp}	R _{min} (Å)	R _{max} (Å)	
-	C ₂₄	1500	6500	12	4.1	16.6	
	C ₄₂	2500	6500	14	4.9	20.0	
	C ₆₀	2500	6500	16	5.5	22.5	

• Use of spherical boundary conditions with various densities ρ =0.025 g/cm³ — 1.7 g/cm³

- REMD simulation over a wide range of temperature T~2000 K 6500 K using REBO
- Use of spherical boundary conditions with various densities ρ =0.025 g/cm³ 1.7 g/cm³

Cluster	Т _{тіп} (К)	Т _{тах} (К)	N _{temp}	R _{min} (Å)	R _{max} (Å)
C ₂₄	1500	6500	12	4.1	16.6
C ₄₂	2500	6500	14	4.9	20.0
C ₆₀	2500	6500	16	5.5	22.5

- Quenching of the structures to extract local minima
- Elimination of redundant structures and dissociated structures

- REMD simulation over a wide range of temperature T~2000 K 6500 K using REBO
- Use of spherical boundary conditions with various densities ρ =0.025 g/cm³ 1.7 g/cm³

Cluster	Т _{тіп} (К)	T _{max} (K)	N _{temp}	R _{min} (Å)	R _{max} (Å)
C ₂₄	1500	6500	12	4.1	16.6
C ₄₂	2500	6500	14	4.9	20.0
C ₆₀	2500	6500	16	5.5	22.5

- Quenching of the structures to extract local minima
- Elimination of redundant structures and dissociated structures

Cluster	before selection	dissociated	redundant	final
C ₂₄	1,500,060	149,933	1,251,764	98,363
C ₄₂	1,400,056	282,204	631,380	486,472
C ₆₀	1,600,064	320,332	623,294	656,438

UNIVERSITÉ

planar hexagonal

ρ=0.15 g/cm³, R=9.1 Å

ρ=0.15 g/cm³, R=9.1 Å

 ρ =0.15 g/cm³, R=12.4 Å

fullerenes

 ρ =0.15 g/cm³, R=12.4 Å

fullerenes

planar hexagonal

bretzel

Structural analysis

• Gyration tensor
$$Q^{\alpha\beta} = \frac{1}{N} \sum_{i} \delta r_{i}^{\alpha} \delta r_{i}^{\beta}$$
 $\delta \mathbf{r}_{i} = \mathbf{r}_{i} - \mathbf{r}_{g}$
 $R_{g}^{2} = \frac{1}{N} \sum_{i} \delta \mathbf{r}_{i}^{2} = \operatorname{Tr} \mathbf{Q}$ squared radius of gyration: spatial extension of the structure
 $\mathbf{D} = \mathbf{Q} - \operatorname{Tr} \mathbf{Q} \mathbf{I}$
 $A_{3} = \frac{3}{2} \frac{\operatorname{Tr} (\mathbf{D}^{2})}{(\operatorname{Tr} \mathbf{Q})^{2}}$ asphericity: A₃=0 for a sphere, A₃=1 for a linear chain
 $S = 27 \frac{\operatorname{Det} (\mathbf{D})}{(\operatorname{Tr} \mathbf{Q})^{3}}$ prolateness: S=-0.25 for a plane, S=2 for a linear chain

• Hybridization state: purely geometrical definition from the number of neighbors and the angles

Analysis of the quenched structures: C₂₄

dehydrocoronene

Analysis of the quenched structure: C₂₄

Analysis of the quenched structure: C₂₄

Analysis of the quenched structures: C_{24}

Fullerene isomers (1812)

planar hexagonal
C₆₀

Analysis of the quenched structures: C₆₀

E = 0

E = 0.48 eV/atoms

E = 0.12 eV/atoms

E = 0.72 eV/atoms

E = 0.24 eV/atoms

E = 0.88 eV/atoms

- LAMMPS is a power MD tool for simulate the structuration of carbon clusters
- The current implementation of (AI)REBO in LAMMPS is bug free
- AIREBO is not a derivable potential
- Some parameters in REBO need to be changed (this can be easily fixed)

THANKS FOR YOUR ATTENTION

LAMMPS

Energy distribution of quenched structures

Energy (eV/atom)

LAMMPS

Local structural analysis

• Hybridization state: purely geometrical definition from the number of neighbors and the angles

sp:
$$\begin{cases} N(i) = 1 \text{ or } 2, \\ \theta_k > 170^\circ \forall k. \end{cases}$$

$$sp^{2}: \begin{cases} N(i) = 2 \text{ or } 3, \\ 100^{\circ} < \theta_{k} < 125^{\circ} \forall k, \\ Var(\theta_{k}) < 12^{\circ}. \end{cases}$$

sp³:
$$\begin{cases} N(i) = 4, \\ 100^{\circ} < \theta_k < 120^{\circ} \forall k, \\ \operatorname{Var}(\theta_k) < 12^{\circ}. \end{cases}$$

Analysis of the quenched structure: C₄₂

45 fullerene isomers

LAMMPS

Analysis of the quenched structure: C₄₂

planar structures

LAMMPS