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Carbon clusters: an astrophysical issue

• ~200 molecules have been detected in the Interstellar medium (ISM)

Horsehead nebula Iris nebula

• The ISM is composed of H, He, C, O, N, …
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Carbon clusters: an astrophysical issue

• The presence of polycyclic aromatic 
hydrocarbons (PAH) in the ISM have 
been suggested for more than 30 
years.

• No clear identification of a specific 
PAH have been achieved

Tielens, Annu. Rev. Astron. Astrophys. 46, 289 (2008) 
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Carbon clusters: an astrophysical issue

• C60 Buckminsterfullerene have been identified in 2010 in the ISM

Sellgren et al. Astrophys. J. Lett. 722, L54 (2010)
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Polycyclic Aromatic Aliphatic Mixed Hydrocarbons
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Objectives

• Explore the diversity of hydrocarbon structures without preconceived model 
through the use of atomistic simulations

• Compute the spectroscopic response (IR and UV/Visible) of these structures
• Link structure to spectroscopic response in order to obtain more information 

from observational data
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Objectives

• Explore the diversity of hydrocarbon structures without preconceived model 
through the use of atomistic simulations

• Compute the spectroscopic response (IR and UV/Visible) of these structures
• Link structure to spectroscopic response in order to obtain more information 

from observational data

We start with carbon clusters C24, C42, and C60
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Interaction potential

• Ab-initio or semi-empirical potentials cannot be used on a large scale potential 
energy surface (PES) exploration

• To describe the interaction between carbon atoms we need a reactive potential

• The Reactive Empirical Bond Order Potential (REBO) can describe C and H atoms. 
It includes short-range interactions only

• The Adaptative Intermolecular Reactive Bond Order Potential (AIREBO) is built 
upon REBO and includes long-range interactions and single bond torsional 
interactions 

• REBO and AIREBO have been used for a large variety of materials (graphene, 
diamond,…) as well as molecules

• Both REBO and AIREBO are implemented in LAMMPS

⚠ REBO and AIREBO have suffered and still suffer 

from several issues in LAMMPS
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REBO potential

• REBO potential introduced in 1990 by 
Brenner

• bij: function of the environment of the bond. 
Includes 3-body and 4-body terms

V =
X

i<j

�
V R(rij)� bijV

A(rij)
�

Brenner et al.  J. Phys. Cond. Mat., 14, 783 (2002)
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AIREBO potential

• AIREBO potential introduced in 2000 by Stuart Stuart et al. , JCP 112 6472 (2000)

V AIREBO = V REBO + V LJ + V Tors

short-range covalent 
interactions

non-bonded 
interactions: Lennard-

Jones

torsional potential 
around single bonds 

(4-body term)
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(AI)REBO in LAMMPS

• It has been known for several years that (AI)REBO implemented in LAMMPS 
suffered from bugs

• Trajectories were crashing and energy was not conserved 
• Several LAMMPS users/developers contributed to fix several bugs in the force 

calculation of the (AI)REBO potentials
• With the Aug. 2017 release of LAMMPS  these bugs were corrected

• spline coefficients read from an input file did not correspond to hard-coded 
parameters

• AIREBO in LAMMPS was implemented from a transcription of a Fortran code 
which included a bug in the force calculation (LJ part).
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Benchmark: liquid carbon

• Box of 128 carbon atoms at 5000 K with PBC (NVT) 
⍴=2 g.cm-3, Δt=0.01 fs
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• Box of 128 carbon atoms at 5000 K with PBC (NVT) 
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Can we now safely use AIREBO with LAMMPS ?
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• Box of 128 carbon atoms at 5000 K with PBC (NVT) 
⍴=2 g.cm-3

-660.05

-660.045

-660.04

-660.035

-660.03

-660.025

-660.02

-660.015

 0  200  400  600  800  1000

E
N

o
sé

 (
e
V

)

Time (fs)

Δt = 0.01 fs
Δt = 0.005 fs



LAMMPS

Benchmark: liquid carbon

• Box of 128 carbon atoms at 5000 K with PBC (NVT) 
⍴=2 g.cm-3
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Energy jumps remain even at very small timesteps
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Non-bonded interaction in AIREBO

• In AIREBO long-range interactions (LR) are switched off at short range with a 
connectivity switch Cij (using the REBO bonding information)

• LR interactions between atoms i and j are switched off 
• if i and j are first neighbors (1-2 interactions)
• If i and j are second neighbors (1-3 interactions)
• If i and j are third neighbors (1-4 interactions)

Cij = 1�max {wij(rij), wik(rik)wkj(rkj) 8k,wik(rik)wkl(rkl)wlj(rlj) 8k, l}

wij(rij) REBO cutoff for short range interactions

The max function is not differentiable !

• Smooth version of the connectivity switch

Cij = (1� wij)
Y

k 6=i,j

(1� wikwkj)
Y

k,l 6=i,j

(1� wikwklwlj)

⚠ this function has not been properly tested
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Benchmark: liquid carbon

• Box of 128 carbon atoms at 5000 K with PBC (NVT) 
⍴=2 g.cm-3, Δt=0.01 fs
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Energy conservation is finally recovered !
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What about REBO in LAMMPS ?

• Some parameters in AIREBO are different from the REBO parameters

• LAMMPS used only the AIREBO parameters

• This have been first pointed out by Favata et al. Comp. Phys. Comm. (2016)

• This has been partially fixed in LAMMPS ….
• We can compare the atomization energies computed with LAMMPS and those given in 

Brenner et al.  J. Phys. Cond. Mat., 14, 783 (2002)

average error for REBO: 335 meV

average error for REBO’: 2 meV

REBO: potential given in distributed 
version of LAMMPS (02/2018)

REBO’: modified potential according to 
the parameters given in Brenner et al.  J. 
Phys. Cond. Mat., 14, 783 (2002)
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Potential energy surface exploration of carbon clusters

• Carbon clusters are described by a complex and very rugged potential energy 
surface (PES) which includes a tremendously large number of local minima.

• The use of traditional Monte-Carlo (MC) simulations cannot explore efficiently 
the PES

Use of Replica Exchange Molecular Dynamics (REMD) simulations

R

V Th

Tℓ < Th
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• REMD simulation over a wide range of temperature T~2000 K — 6500 K using REBO

• Use of spherical boundary conditions with various densities ⍴=0.025 g/cm3 — 1.7 g/cm3

Simulation protocol

• Quenching of the structures to extract local 
minima

• Elimination of redundant structures and 
dissociated structures

V

R
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C24: example of REMD simulation
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C24: example of REMD simulation
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C24: example of REMD simulation
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C24: example of REMD simulation
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C24: example of REMD simulation
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C24: example of REMD simulation
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C60: example of REMD simulation
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C60: example of REMD simulation
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C60: example of REMD simulation
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C60: example of REMD simulation
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C60: example of REMD simulation

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

-400 -380 -360 -340 -320 -300 -280 -260

P
(V

) 
(a

rb
. 

u
n

its
)

Energy (eV)

6500 K

2500 K ⍴=0.15 g/cm3, R=12.4 Å  

3441 K

fullerenes planar hexagonal bretzel dissociated



LAMMPS

Structural analysis

• Gyration tensor

• Hybridization state: purely geometrical definition from the number of neighbors 
and the angles

Q↵� =
1

N

X

i

�r↵i �r
�
i �ri = ri � rg

R2
g =

1

N

X

i

�r2i = TrQ

A3 =
3

2

Tr
�
D2

�

(TrQ)2

S = 27
Det (D)

(TrQ)3

D = Q� TrQ I

squared radius of gyration: spatial extension of the structure

asphericity: A3=0 for a sphere, A3=1 for a linear chain

prolateness: S=-0.25 for a plane, S=2 for a linear chain
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Analysis of the quenched structures: C24
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Analysis of the quenched structure: C24
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Analysis of the quenched structure: C24
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Analysis of the quenched structure: C24
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Analysis of the quenched structures: C24

E = 0 E = 0.06 eV/atoms E = 0.17 eV/atoms

E = 0.18 eV/atoms E = 0.48 eV/atoms E = 0.48 eV/atoms
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Analysis of the quenched structure: C60
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Analysis of the quenched structure: C60
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C60
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Analysis of the quenched structures: C60

E = 0 E = 0.12 eV/atoms E = 0.24 eV/atoms

E = 0.48 eV/atoms E = 0.72 eV/atoms E = 0.88 eV/atoms
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Conclusions

• LAMMPS is a power MD tool for simulate the structuration of carbon clusters
• The current implementation of (AI)REBO in LAMMPS is bug free
• AIREBO is not a derivable potential
• Some parameters in REBO need to be changed (this can be easily fixed)
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THANKS FOR YOUR ATTENTION
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Energy distribution of quenched structures
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Local structural analysis

• Hybridization state: purely geometrical definition from the number of neighbors 
and the angles

sp:

(
N(i) = 1 or 2,

✓k > 170� 8 k.

sp2:

8
><

>:

N(i) = 2 or 3,

100� < ✓k < 125� 8 k,

Var(✓k) < 12�.

sp3:

8
><

>:

N(i) = 4,

100� < ✓k < 120� 8 k,

Var(✓k) < 12�.
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C42: exemple of REMD simulation
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Analysis of the quenched structure: C42
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Analysis of the quenched structure: C42
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Analysis of the quenched structure: C42
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